Uh, yes. Absolutely. The corona of the sun alone is about 5 million km thick and has temperatures of >1 million degrees C.
Crossing that distance takes about 0.3 light minutes. For a planet with a somewhat large mass traveling at a fraction of that (average travel speed of celestial objects is around 1000-10000 km/min, depending on its mass), it would take between 83 and 833 hours (3.5-35 days).
For reference, the distance from earth to moon is about 400000km (and takes a rocket 3 days to traverse), so the sun’s radius is about 12x that. Just put things into perspective.
Silicon vaporizes at 3650°C, iron at 3500°C. A couple days at a million degrees? Yeah it’s vaporized alright.
I could see that if a planet slowly spiraled into it, but the question specifically asks about a direct collision.
Do you really think silicon and iron and other relatively heavy elements can simply be vaporized that quickly?
Uh, yes. Absolutely. The corona of the sun alone is about 5 million km thick and has temperatures of >1 million degrees C.
Crossing that distance takes about 0.3 light minutes. For a planet with a somewhat large mass traveling at a fraction of that (average travel speed of celestial objects is around 1000-10000 km/min, depending on its mass), it would take between 83 and 833 hours (3.5-35 days).
For reference, the distance from earth to moon is about 400000km (and takes a rocket 3 days to traverse), so the sun’s radius is about 12x that. Just put things into perspective.
Silicon vaporizes at 3650°C, iron at 3500°C. A couple days at a million degrees? Yeah it’s vaporized alright.